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Abstract—To enable decentralised actions in very large dis-
tributed systems, it is often important to provide the nodes with
global knowledge about the values of attributes across all nodes.
This paper shows how, given an attribute whose values are
distributed across a large decentralised system, each node can
efficiently estimate the statistical distribution of these values.
Simulations using heavily skewed real-world node attribute
distributions show that our estimation methods outperform
the state-of-the-art heuristics by an order of magnitude with
an average error of 0.05% and a maximum error of 2%. To
obtain this accuracy, each node sends on average just 120 kB
of data independent of the system size. Our algorithms also
achieve this accuracy in the presence of heavy churn of system
membership. Furthermore, our algorithm enables self-tuning
by continuously estimating the accuracy of its own distribution
approximation.

I. INTRODUCTION

Large-scale distributed systems such as computing clouds,

Grids, and peer-to-peer overlays are increasingly relying on

decentralisation, by scattering application-level and system-

level information across a very large collection of loosely-

coupled nodes. While this design principle has demonstrated

its effectiveness in terms of scalability and robustness, it

introduces serious challenges for global-level tasks like

monitoring and optimisation. One important challenge is

to estimate global system properties, for example the total

available storage space or the average load on the machines.

Such global properties can be computed in a decentralised

fashion by using aggregation protocols [1].

Aggregation protocols allow for the computation of a

global scalar value – like a mean, a total count, or the

rank of a node compared to the others according to a given

metric. However, this is often not sufficient for effectively

monitoring and optimising a distributed system. In many

cases it is necessary to have a view of how properties vary

across the system’s nodes, by estimating their statistical

distribution. For example, in a fully decentralised load

balancing mechanism, any node can detect a global load

imbalance by monitoring the statistical distribution of the

load at all other nodes. Estimating the statistical distribu-

tion of attribute values also allows identifying outliers and

clusters, which can be used to detect hardware and software

defects or intrusion attempts [2].

The main challenge for a decentralised protocol that

estimates statistical distributions of attribute values is to

obtain good accuracy while maintaining low communication

overhead. Achieving good accuracy is particularly difficult in

real-world systems where sets of values are skewed and hard

to approximate by synthetic distributions. Although some

solutions for decentralised estimation of statistical distribu-

tions have been recently proposed, they suffer from poor

accuracy for skewed distributions or high communication

overhead [3], [4].

This paper presents Adam2, a new decentralised protocol

to accurately estimate the distribution of an attribute with a

low communication cost1. Our algorithm continuously mon-

itors the accuracy of its own distribution estimation. This

feedback mechanism allows an application to dynamically

tradeoff estimation accuracy to further reduce overhead.

Adam2 is based on a gossip communication model.

Gossip protocols provide scalable and robust information

dissemination, while achieving a low overhead [1]. We

use a gossip-based method to efficiently and autonomously

estimate the fraction of nodes in the system whose attribute

value is lower than a certain threshold. By applying this

method to a set of thresholds, each node quickly estimates

the distribution of the attribute across the whole system. The

set of thresholds determines the accuracy of the distribution

approximation. To improve accuracy, our algorithm refines

the set of thresholds across multiple consecutive instances.

The thresholds of an instance are based on the results from

the previous instance. Nodes execute the entire algorithm

autonomously without any designated coordinator.

We evaluate our algorithm through simulations using real-

world attribute distributions with different characteristics [5].

We show that even for heavily skewed distributions it

reduces the maximum vertical distance between the real

distribution curve and the estimated one to about 2%, and

the average distance between the two curves to about 0.05%,

while each node sends on average 120 kB of data indepen-

dent of system size. This level of accuracy is one order of

magnitude better than current state-of-the-art systems.

1Adam2 was named after Adam1, who increased world population by
one on October 28th, 2009. For obscure reasons, Adam Sacha v1.0 was
registered at the municipality with no release number.
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This paper is organised as follows. Section II discusses

related work. Section III presents our system model. Sec-

tions IV, V, and VI describe the algorithms that estimate an

attribute distribution using one aggregation instance, refine

the set of interpolation points between multiple instances,

and estimate the approximation accuracy. Section VII dis-

cusses our evaluations, and Section VIII concludes.

II. RELATED WORK

The task of data aggregation, or synopsis construction,

has been well-studied in the past in the areas of sensor

networks [6] and distributed databases [7]. However, most of

the proposed algorithms are reactive. Each time a node re-

quests aggregation, a dissemination tree (or weighted graph)

is constructed between nodes in order to collect the required

data from the system. Such graphs are neither robust to

failures of nodes near the sink nor do they efficiently

disseminate the result to all nodes.

Adam2 is based on gossip protocols, which are renowned

for their scalability, robustness, and low cost [1]. These

protocols have been used to approximate simple system

properties such as minimum, maximum, and mean values

of an attribute. We extend them by allowing nodes to

approximate system-wide distributions and to assess and

improve the accuracy of these approximations.

Several algorithms allow nodes to estimate their own

ranks and slices [8]–[10]. While these solutions incur less

overhead, they provide more limited information than a

distribution estimation. For example, they do not enable

nodes to estimate whether an attribute distribution is skewed,

imbalanced, or contains outliers: node ranks by definition are

always assigned between 1 and N (system size), regardless

of the actual attribute distribution.

The problem of outlier detection is addressed using gossip

by [2]. Nodes gossip synopses of clusters and outliers to

enable both the removal of outliers and the discovery of

cluster formation. However, the cluster synopses do not

estimate the full distribution of node parameters. Adam2 is

also well-suited to other distributions without clusters.

A simple way to estimate an attribute distribution is to

draw a random sample of attribute values [4], [11]. However,

as we show section VII, such an approach is extremely

inefficient compared to Adam2.

Haridasan et al. estimate an attribute distribution by gos-

sipping synopses of equi-depth histograms [3]. Using equi-

depth bins, the system converges towards an accuracy around

7% in the absence of churn. Adam2 obtains a much better

accuracy under the same conditions. Furthermore, it also

estimates its own accuracy to enable a tradeoff of accuracy

for communication overhead.

III. SYSTEM MODEL

We consider a distributed system consisting of a large

number of autonomous nodes. The goal of Adam2 is to

estimate, in a scalable fashion, the cumulative distribution

of some discrete attribute A at every node in the system.

Nodes are called peers because we assume no central point

of control and all nodes participate equally in the algorithm.

The peers are organised in a P2P overlay where each peer

maintains links to a small number of randomly selected

nodes called its neighbours. The set of neighbours of a

peer changes over time, as peers exchange neighbour lists

to obtain robust connectivity [11].

The cumulative distribution function (CDF) for an at-

tribute A is defined as a function F : R → R such that

F (x) is equal to the fraction of nodes that have a value for

A at or below x:

F (x) =
1
N

∣∣∣{p : A(p) ≤ x}
∣∣∣

where N denotes the system size.

To approximate F , we estimate the function at a subset

of the discrete points, keeping the results in a data structure

similar to a cumulative histogram. Specifically, we define a

sequence of λ elements, called H, where the i’th element,

H(i), contains a pair (ti, fi) representing the fraction of

peers fi that have a value for A at or below the threshold
ti :

fi =
1
N

∣∣∣{p : A(p) ≤ ti}
∣∣∣

The thresholds can be chosen arbitrarily within the attribute

domain. Each element corresponds to a single CDF value,

since F (ti) = fi for 1 ≤ i ≤ λ. Hence, the CDF function

can be approximated by interpolating the points of H. We

discuss in the next section how to efficiently and accurately

obtain the pairs (ti, fi).
We measure the CDF approximation accuracy using two

classical metrics. The Kolmogorov-Smirnoff (or maximum

error) metric defines the distance between function F and its

approximation Fp at node p as: supx |F (x)−Fp(x)|. Given

that the attribute space in our system is discrete, we define

the maximum error of Fp as:

Errm(p) = max
x

|F (x) − Fp(x)|
Since different peers in the overlay can generate slightly

different distribution estimations, we calculate the corre-

sponding aggregate of these metrics over all peers:

Errm = max
p

Errm(p)

This error metric provides an upper bound on the approxi-

mation error of any peer in the system.

While Errm is useful to bound the error that any peer

observes, this bound is determined by a single point discrep-

ancy between F and Fp. Hence, it is quite sensitive to noise.

A common approach to summarise the error contributed

by all points calculates the area between the two curves:∫
x
|F (x) − Fp(x)| dx. In the discrete case, this metric

corresponds to a sum of |F (x) − Fp(x)| over all attribute
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values. We use the average vertical distance between F and

Fp to allow comparisons of error across different attributes:

Erra(p) =
max∑

x=min

|F (x) − Fp(x)|
max − min

Again, we calculate an aggregate across all peers:

Erra = avg
p

Erra(p)

IV. CDF APPROXIMATION ALGORITHM

Our CDF approximation algorithm is based on periodic

gossip rounds, executed at roughly the same rate by all

nodes, where neighbouring nodes exchange information. A

sequence of several gossip rounds, called an aggregation
instance, generates a new CDF approximation at all nodes

in the system. Nodes occasionally initiate new instances to

improve the estimation accuracy and adapt to system churn.

An aggregation instance is started probabilistically by any

node, which selects a set of ti thresholds and epidemically

spreads the information about the new instance and the

thresholds to other nodes using gossip (see Figure 1). The

nodes run an averaging protocol wherein nodes exchange

their current values during each round of gossip and cal-

culate new values by averaging the current and received

values [1]. In order to calculate the fraction fi of nodes

that have attribute values below (or at) ti, a peer p enters

the averaging protocol with a value of 1 if A(p) ≤ ti and 0

otherwise. Through a sequence of gossip exchanges and the

corresponding averaging, the nodes estimate the mean of all

the introduced values, which is equal to fi.

Similarly, nodes estimate the system size N using the

averaging protocol: Each peer p enters the protocol with a

weight variable wp = 0, except the unique initiator q of the

instance which sets wq = 1. Over successive exchanges, the

mean approaches 1/N .

The accuracy of the averaging protocol increases exponen-

tially with time. After a fixed number of rounds, all nodes

update their CDF and system size estimations, and terminate

the aggregation instance.

We associate each aggregation instance with a unique

instance identifier id. The instances may overlap in time, and

thus a peer may participate in multiple independent instances

simultaneously. Since the instances are executed in isolation

from each other, we simplify the algorithm description and

assume only one running aggregation instance.

Starting an Aggregation Instance: Any peer in the

system may start a new aggregation instance. Other peers

learn of new instances through the regular gossip exchanges.

To prevent the system from being overwhelmed by new

instances, a peer starts a new instance with probability Ps

per round calculated as 1
NpR . Np is the current estimation

of N at peer p generated in a previous aggregation instance

(nodes joining the system are bootstrapped by their initial

neighbours), and R is the system constant that regulates

1: // Executed by a probabilistically self-selected
2: // node at the beginning of an instance
3: StartInstance(p):
4: {ti} ← select λ interpolation points
5: Hp ← {(ti, fi) | fi = 1 iff A(p) ≤ ti; 0 otherwise}

6: // Run by each node in each round
7: Round(p):
8: q ← select random neighbour
9: sendRequest (Hp) to q

10: receiveResponse (Hq) from q
11: Merge(Hq)
12: while round has not finished do
13: receiveRequest (Hn) from n
14: sendResponse (Hp) to n
15: Merge(Hn)
16: end while

17: Merge(Hq):
18: if Hq �= ∅ then
19: let Hq = {(ti, fi)}
20: if Hp = ∅ then
21: Hp ← {(ti, f

′
i) | f ′

i = 1 iff A(p) ≤ ti; 0 otherwise}
22: end if
23: Hp ← {(ti,

fi+f ′
i

2
)}

24: end if

Figure 1. Aggregation algorithm at peer p. For simplicity, the system size
estimation and instance termination mechanisms are not shown. The Hp

variable is initialised with ∅ at all peers.

the frequency of new aggregation instances. In a stable

state, with a steady number of peers in the system, a new

aggregation instance is created on average every R rounds.

For each aggregation instance, peer p stores the set of

interpolation points Hp and the weight wp that it uses to

estimate the system size. To start a new instance, peer p first

sets weight wp = 1, then selects a set of threshold values

ti using the SELECTPOINTS procedure described later, and

finally generates an initial set of interpolation points Hp =
{(ti, fi) | 1 ≤ i ≤ λ, fi = 1 if A(p) ≤ ti; 0 otherwise}.

Executing an Aggregation Instance: An aggregation

instance comprises a sequence of gossip rounds. A gossip

exchange between peers p and q is entirely symmetric:

Peer p sends Hp and wp to q, and peer q replies with

Hq and wq. Both peers then merge the received values in

the MERGE procedure. If either peer has yet not seen the

aggregation instance id, it joins the instance by sending an

empty set, initialising its data structures, and merging the

received values. The other peer then ignores the exchange

on receiving an empty set. When a peer joins an instance,

it initialises its data structures by setting weight wp = 0
and creating an initial set of interpolation points Hp =
{(ti, fi) | 1 ≤ i ≤ λ, fi = 1 if A(p) ≤ ti; 0 otherwise}.

Note that all peers use the same thresholds ti to initialise

Hp as assigned by the peer that started the instance. Finally,

both peers average the wp and wq weights and merge Hp

and Hq by averaging the corresponding fi values.
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Terminating an Aggregation Instance: Every instance

is associated with a time-to-live counter, which is reduced by

one per round at each peer. For simplicity, this mechanism

is not shown in Figure 1. When an instance ends, each

peer p updates its estimation of the number of nodes in

the system Np = 1
wp

and approximates the whole attribute

CDF by interpolating the points of Hp. We use simple

linear regression between each consecutive pair of points

to obtain Fp, but more complex approaches are possible.

Finally, each peer deletes its Hp set and stops participating

in the aggregation instance.

Extreme CDF Values: So far, for simplicity we have

ignored two special points in any approximation: the first

and last. Adam2 finds the minimum and maximum attribute

values to use in later aggregation instances. In order to

discover these values, the local minimum and maximum

at each node are added to H and treated specially. When

merging tuples, their corresponding minimum and maximum

values are chosen. All nodes then quickly converge on the

global minimum and maximum for all attribute values.

Multiple Attribute Values per Node: The aggregation

algorithm can be easily extended to handle cases where

individual nodes are allowed to have multiple attribute

values. For example, to estimate the distribution of file sizes

at all nodes in the system each node contributes its set of file

sizes. In this case, we define A(p) ⊂ A as the set of values

for attribute A at peer p and A as the set of all attribute

values at all nodes in the system. The CDF for attribute A
is defined as function F : R → R such that

F (x) =

∣∣∣{a ∈ A : a ≤ x}
∣∣∣

|A|
As previously, the CDF is approximated by calculating

the value for F in a set of discrete points (ti, fi) where

F (ti) = fi. To calculate fi, nodes generate two values using

the averaging algorithm. First, each node p calculates avgi

– the average number of attribute values below ti per node

– by contributing |{a ∈ A(p) : a ≤ ti}| to the averaging

algorithm. Second, each node p calculates avg – the average

number of attributes per node – by contributing |A(p)| to the

averaging algorithm. Note that avg is independent of i and

can be calculated once for all the CDF points. The fi value

is then given as fi = avgi

avg .

V. INTERPOLATION POINT SELECTION

When starting a new aggregation instance, each peer needs

to decide on the placement of the interpolations points in

H. Initially a node may have no prior knowledge about

the attribute distribution. The simplest approach in this case

is to spread the interpolation points at uniform intervals

within the attribute domain. However, the distributions of

node characteristics in large-scale distributed systems are

often highly skewed [5], resulting in a poor approximation

using uniform intervals. We show in Section VII-B better

performance using attribute values found in a subset of

neighbours of the initiating node.

Once the system has a rough estimate of the attribute

distribution, it can further refine the selection of interpolation

points in future instances, and reduce the CDF approxi-

mation error. Different selection algorithms may be used

depending on the metric that the application tries to optimise.

A. Minimising the Maximum Error

One of the simplest threshold selection heuristics to

reduce Errm(p), which we call HCut, chooses the interpo-

lation points for a new aggregation instance such that they

divide the image of Hp into (λ + 1) equal size quantiles.

Since Errm(p) is determined by the maximum vertical

distance between interpolation points, this heuristic attempts

to bound the maximum error to 1
λ+1 , assuming the CDF

does not change between aggregation instances. Figure 2(a)

illustrates the HCut algorithm: the interpolation points for

the next aggregation instance (t1, t2, t3) correspond to 25%,

50%, and 75% quantiles.

The HCut algorithm is efficient for approximating smooth

CDFs. However, in many systems the number of possible

attribute values is small. For example, many PCs have

512 MB, 1 GB, or 2 GB of RAM, but relatively few current

machines have an amount of RAM that is between these

values. The CDFs of such real-world attributes are step

functions that are poorly approximated by HCut.

To approximate these CDFs, we propose MinMax – a

heuristic that attempts to identify and approximate steps in

a CDF curve. Figure 3 shows the pseudocode for MinMax.

MinMax iteratively finds the farthest two consecutive inter-

polation points by vertical distance, denoted n and n−1, in

the previous set of interpolation points Hold, and the closest

three interpolation points by vertical distance in H denoted

m − 1, m, and m + 1. If the two farthest points are farther

apart than the closest three, the midpoint m of the closest

three is removed from both H and Hold, and a new point is

added to H at the new, interpolated midpoint between n and

n − 1. When no points satisfy the condition, the thresholds

in H are returned as the output of the algorithm.

A sample MinMax step is graphically illustrated in Fig-

ure 2(b). MinMax changes the interpolation points only if it

is expecting to reduce the interpolation error. By iteratively

splitting the steepest fragments in the interpolated curve over

multiple aggregation instances, MinMax efficiently identifies

steps in the CDF.

B. Minimising the Average Error

The HCut and MinMax heuristics attempt to minimise the

maximum vertical distance measured by Errm(p). However,

Erra(p) depends upon the area between the CDF and the

interpolation. To reduce the area, we consider the LCut
heuristic that selects the interpolation points based on their

Euclidean distance instead of vertical distance.
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(a) Interpolation point selection using HCut. The
grey curve represents F – the true CDF. The black
line represents Hp – the previous CDF interpola-
tion at p. The selected points are t1, t2, and t3.

(b) Interpolation point selection using Min-
Max. The vertical distance d1 is less than d2.
Moving the midpoint of the first segment to
the second at point t2 is thus likely to reduce
Erra(p).

(c) Interpolation point selection using LCut.

Points {t1, t2, t3} are chosen to divide
equally the Euclidean distance along the pre-
vious approximation H.

Figure 2. The HCut, MinMax and LCut heuristics

1: SelectPoints(H):
2: Hold ← H
3: loop
4: find n that maximises |fn − fn−1| in H
5: find m that minimises |fm+1 − fm−1| in Hold

6: if |fn − fn−1| > |fm+1 − fm−1| then
7: remove point (tm, fm) from H and Hold

8: add point (
tn+tn−1

2
,

fn+fn−1
2

) to H
9: else

10: return H
11: end if
12: end loop

Figure 3. MinMax interpolation point selection algorithm. The algorithm
iteratively attempts to split the widest vertical gap while removing the
midpoint from the narrowest cluster of three points.

Figure 2(c) illustrates the LCut heuristic. It first calculates

the length of the H linear interpolation curve for the previous

aggregation instance. Then, it divides the H curve into λ
equal length (by Euclidean distance) segments to determine

the new point placement. The horizontal axis is scaled by

max − min in order to equalise the horizontal and vertical

coordinate ranges. As shown later in Section VII-C, LCut

achieves lower average interpolation error Erra than HCut

and MinMax, but higher maximum error Errm.

VI. DYNAMIC CONFIDENCE ESTIMATION

Adam2 also allows each node to estimate its own CDF

approximation accuracy. This can be used to dynamically

tune the algorithm parameters – such as the number of

interpolation points and the number of executed instances

– according to application-specific accuracy requirements.

The accuracy estimation is based on the fact that nodes

estimate CDF values very accurately at the points of H. To

estimate the approximation accuracy, the node that starts the

instance generates an additional set of verification points V
similar to the interpolation points H where each element

in V is a pair (t′i, f
′
i) such that F (t′i) = f ′

i . The extra V
points are added to aggregation algorithm to be gossipped

and merged along with the original H points.

The t′i thresholds for the verification points are chosen by

the node that initiates a new aggregation instance according

to the selected error metric. In order to estimate the average

CDF approximation accuracy Erra(p), the t′i thresholds

are selected uniformly between the attribute minimum and

maximum. At the end of an instance, each peer p estimates

the accuracy of its CDF approximation Fp as

EstErra(p) = avg
(t′i,f

′
i)∈Vp

|Fp(t′i) − f ′
i |

The maximum approximation error Errm(p) is generally

more difficult to estimate compared to Erra(p) since it is

determined by a single point in the CDF. In order to estimate

Errm(p), the peer q that starts a new aggregation instance

selects the verification points Vq based on its current CDF

interpolation. Specifically, the Vq points are inserted between

the Hq points by iteratively dividing the farthest two points

in Hq by vertical distance. This way, peer q attempts to

find the attribute values at which the true CDF and the

interpolated curve most differ. When an instance ends, each

peer p estimates its approximation accuracy as

EstErrm(p) = max
(t′i,f

′
i)∈Vp

|Fp(t′i) − f ′
i |

VII. PERFORMANCE EVALUATION

We evaluate Adam2 in PeerSim, a simulator for peer-to-

peer systems [12]. This allows us to evaluate systems with

100,000 nodes, which would be infeasible using a real-world

deployment. Unless specified otherwise, all evaluations are

based on 100,000 nodes and λ = 50 interpolation points.

We did not use a synthetic distribution of attribute values.

Synthetic distributions are typically smooth and therefore

easier to approximate. We instead use real-world data from

the BOINC volunteer computing project where skew and

discontinuities occur [5]. For each machine that partici-

pated in BOINC in 2008, we extracted several attributes,

including: measured CPU performance in FLOPS, measured

downstream bandwidth, amount of installed memory, and

amount of installed disk space. We filtered out samples

701701
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Figure 4. Actual attribute distributions F from the BOINC project [5].

from the trace that result from obviously faulty readings

(for example, a machine with a bandwidth capacity above

1031 bps or one with a negative amount of memory). For

ease of presentation, we present in this paper only the

experiments with the CPU and RAM attributes. The other

attributes generated similar results. Figure 4 shows the actual

CDFs of the CPU and RAM attributes. The CPU attribute

has a smooth distribution, while the CDF for RAM contains

visible steps. Step functions are harder to estimate accurately

because their curves are not suited to simple interpolation

algorithms.

We compare Adam2 with two other CDF estimation

approaches: the histogram-based EquiDepth heuristic [3] and

random sampling [4]. In the latter approach we construct an

attribute CDF based on a random subset of attribute values

drawn from the system. For each algorithm, we measure

the maximum approximation error Errm and the average

approximation error Erra. We show results from single runs

of the algorithms; multiple runs produce similar results.

A. Single-instance CDF Estimation Accuracy

Figure 6(a) plots the Erra and Errm metrics at each

protocol round within a single aggregation instance. We

compare the accuracy obtained at the interpolation points

with those of the entire CDF domain. For clarity, only

the RAM attribute is displayed – the algorithm generates

similar results for the CPU attribute. During the first few

rounds, not all nodes have joined the aggregation instance

and the error is equal to the maximum value of one. How-

ever, starting from round 10, the error at the interpolation

points decreases at an almost perfectly exponential rate, and

quickly becomes negligible. After 70 rounds it reaches the

level of hardware rounding errors. We consider 25 rounds

sufficient to accurately calculate the CDF at the interpolation

points. The standard deviation of our error metrics across all

system nodes remains below 10−5, and hence, in a single

aggregation instance all peers generate nearly identical CDF

approximations.

At the same time, the Errm and Erra error over the entire

CDF domain does not decrease below a few percent due to

interpolation errors. To further reduce the interpolation error,
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Figure 5. Accuracy of MinMax using different bootstrap approaches.

nodes need to either add new points to H or select a new

set of interpolation points that better fits the CDF curve.

Figure 6(b) plots the performance of EquiDepth in iden-

tical settings. Both algorithms observe similar errors over

the entire CDF (8% max for Adam2 and 10% max for

EquiDepth). However, the approximation error over time at

the selected bins does not improve in the EquiDepth ap-

proach. EquiDepth incurs a significant approximation error

due to sample duplication. The very high accuracy of Adam2

at the selected points is essential both to dynamically gauge

the accuracy of its own CDF estimation and to refine the

selection of points in later aggregation instances.

B. Initial Interpolation Point Selection

Section V discusses the selection of the initial set of

interpolation points in the absence of a previous CDF estima-

tion. Figure 5 compares two simple approaches: 1) assigning

interpolation points uniformly between the minimum and

maximum attribute value (labelled “Uniform Points”); and

2) using a random subset of the attribute values of the peer’s

neighbours in the P2P overlay (“Neighbour-Based Points”).

The results clearly demonstrate that the Neighbour-based

approach significantly improves the algorithm’s conver-

gence. We believe that since MinMax spreads the interpola-

tion points according to the attribute distribution, taking the

initial interpolation points from neighbours bootstraps the

algorithm with points already from the desired distribution.

Further, we also see that MinMax converges much faster

for the smooth CPU distribution than for the heavily-skewed

RAM distribution where a precise selection of interpolation

points is crucial for accuracy. Similar results hold for the

other refinement algorithms. In the next sections we always

use the neighbour-based approach to bootstrap aggregation

instances.

C. Convergence over Multiple Instances

We now compare Adam2 with EquiDepth and random

sampling over multiple aggregation instances. Figure 7

shows that multiple instances in Adam2 effectively improve

accuracy. All algorithms achieve good Errm results for

smooth distributions (CPU). For a heavily-skewed attributes

702702
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Figure 6. Approximation accuracy over one aggregation instance (RAM).
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Figure 7. Comparison between HCut, MinMax, and LCut over multiple instances.
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Figure 8. Approximation error in EquiDepth over multiple phases.
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Figure 9. Approximation error for random sampling.
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such as RAM, MinMax significantly outperforms the others

because it efficiently identifies the steps in the distribution.

We thus focus on the MinMax algorithm when minimising

Errm in the remaining experiments. For Erra, after 3

instances LCut achieves an order of magnitude improvement

compared to other algorithms. We similarly focus on LCut

when minimising Erra in later experiments.

The performance differences of MinMax and LCut for

each error metric demonstrates the difficulty of optimising

for both metrics simultaneously. Although LCut performs

best for Erra and also for Errm for smooth CDFs, it has

the worst performance for Errm for skewed CDFs where

precise point selection is crucial. Defining a single heuristic

that works well for both metrics and diverse CDF shapes

remains as future work.

We compare these results with those of EquiDepth and

random sampling, respectively in Figures 8 and 9. We

execute the EquiDepth phases with the same frequency, du-

ration, and number of bins as aggregation instances to make

comparison as fair as possible. Since EquiDepth does not

refine its histogram bins based on previous CDF estimations,

it generates the same error in every phase. Consequently,

EquiDepth’s Errm is a few times higher than MinMax,

particularly for step-like CDFs. For Erra it performs an

order of magnitude worse than Adam2 using LCut.

The accuracy of random sampling depends on the sample

size. In our 100,000-node system, about 1,000 to 10,000

random samples are necessary to achieve an accuracy similar

to that of MinMax or LCut. Drawing these random samples

using [4] would however generate several network messages

per requested sample – a prohibitive cost compared to

our approach. We finally note that the error measurements

for random sampling are higher for heavily-skewed CDFs

compared to smooth CDFs.

D. Influence of the Number of Interpolation Points

One way to improve accuracy is to increase the number

of interpolation points. This section explores the tradeoff

between the number of interpolation points (and hence the

communication costs) and the obtained accuracy.

Figure 10 plots Errm and Erra after 4 instances (phases)

in Adam2 and EquiDepth when using between 10 and 100

interpolation points (bins). Clearly, more interpolation points

bring better accuracy. The slight variations in the graph can

be explained by the random component of our algorithms.

As previously, EquiDepth is outperformed by MinMax with

the Errm metric and LCut with the Erra metric.

50 points provide acceptable accuracy for many possible

applications: Errm ∼ 2% using MinMax, or Erra ∼ 0.1%
using LCut. However, for the applications that need higher

accuracy, increasing the number of points incurs modest

performance penalty: with 10 extra points, the size of the

messages increases by about 160 bytes; for current networks

this is almost negligible. Furthermore, if the CDF does not

change significantly over time, nodes can combine interpo-

lation points obtained over multiple aggregation instances to

further reduce the overall estimation errors.

E. Scalability

Figure 11 shows the relationship between the number of

nodes in the system and the CDF approximation accuracy

using Adam2. Due to randomisation, the Errm error varies

between the measurements, but the error remains in the

same order of magnitude. The Erra error decreases for

larger systems due to the longer tail of the distribution.

Larger populations of nodes in our experiments have proba-

bilistically higher maximum attribute values, and the longer

tails of the attribute CDFs are easily approximated using

linear interpolation. Since the Erra error is calculated over

all attribute values, CDFs with longer tails produce lower

approximation error.

Adam2 has only one configuration parameter that depends

on the system size: the instance time-to-live. During one

instance, the information about attribute thresholds ti needs

to be propagated to all nodes in the system, and all nodes

need to estimate the corresponding fi fractions using the av-

eraging protocol. However, since the propagation speed for a

push-pull epidemic is exponential and the mean estimation

algorithm converges at an exponential rate, we argue that

an instance duration of a few dozen rounds is sufficient to

obtain high CDF approximation accuracy even in extremely

large systems.

F. Dynamic Attribute Distributions

We have focused so far only on systems in which node

attribute values and attribute CDFs do not change over

time. In systems where attribute CDFs are dynamic, the

approximation accuracy depends not only on the aggregation

and interpolation errors but also on the rate at which the

actual CDF changes. In Adam2, a node evaluates its attribute

value only when it creates or joins a new aggregation

instance. The node then runs the protocol until the end of the

instance irrespective of any changes in the current attribute

value. The CDF estimation error at the end of an instance,

defined by the Errm and Erra metrics, thus depends both

on the accuracy of aggregation, which we have evaluated

in the previous sections, and the difference between the

attribute CDFs at the beginning and end of the instance,

which is entirely application specific.

The accuracy of dynamic CDF estimation can be im-

proved by decreasing the instance duration, for example

by reducing the gossip period. When nodes gossip more

frequently, they exchange data at a higher rate, but the total

communication cost per instance (and hence the cost of CDF

approximation) remains unchanged since nodes generate

exactly the same number of messages. The minimum gossip

period is determined by the message round-trip time, since
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Figure 10. Influence of the number of interpolation points on aggregation accuracy.
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Figure 11. Influence of the system size on approximation accuracy.

nodes need to exchange a pair of messages during each

gossip round.

G. Impact of Churn

Many large distributed systems exhibit a slow, continuous

change in membership called churn. Any monitoring system

must therefore adapt to such changes. We model churn by

randomly removing a fixed fraction of nodes in the overlay

with new nodes at each simulation round. We set a churn rate

typical of P2P systems [13]: Assuming a gossip periodicity

of one second and a mean session duration of 15 minutes,

approximately 0.1% of nodes leave the system per round

and rejoin with a different attribute value drawn from the

same distribution. We do not model changes in the attribute

distribution, as such changes are entirely application specific.

Figure 12(a) shows Errm and Erra in one aggregation

instance under churn. The evaluation metrics do not include

nodes that join the system during the instance execution,

since their CDF approximations are undefined. After an ini-

tial phase, when the instance is propagated to all nodes, the

approximation errors gradually decrease. Since some nodes

leave the system before their fi values are disseminated

and averaged, the approximation error at interpolation points

does not converge to zero. However, the obtained accuracy is

in the order of 0.01%, and is clearly sufficient to approximate

the CDF through interpolation.

Figure 12(b) shows the approximation error produced by

an EquiDepth phase in the same system setup. EquiDepth

is not significantly affected by churn, but as previously, it

only reduces Errm to 10% and Erra to 1%, even at the

selected histogram bins.

Figure 13 shows the Errm and Erra errors incurred by

Adam2 and EquiDepth after 8 protocol instances (phases). In

this experiment, joining nodes are included in the evaluation

metrics since they receive initial CDF approximations –

generated in the previous aggregation instances – from

their neighbours. Joining nodes ignore aggregation instances

(phases in EquiDepth) that have started before they entered

the system in order not to distort the results from already

running aggregation instances.

Both systems show a very high resilience to churn, where

accuracy starts to significantly decrease only at rates of 1%

nodes per gossip round (i.e., 1% per second). This rate is

10 times higher than the rates observed in [13].

H. Confidence Estimation

As described in section VI, Adam2 allows nodes to assess

the accuracy of their own CDF approximations. We evaluate

the accuracy estimation algorithms by computing the average

difference between the nodes’ assessment of an error metric

and the actual value for that error metric. Given the true

CDF approximation accuracy Erra(p) at node p, and p’s
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Figure 12. Approximation accuracy in the presence of churn, for a single instance (RAM).
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Figure 13. Impact of churn rate on approximation accuracy.

own estimation of its accuracy EstErra(p), we define the

error in accuracy estimation at node p as:

|Erra(p) − EstErra(p)|
Erra(p)

Similarly, the error in Errm(p) at node p is defined as:

|Errm(p) − EstErrm(p)|
Errm(p)

Figure 14 shows the accuracy estimation results for these

two metrics. Using 20 verification points, nodes can estimate

their own average approximation accuracy with a 10% error.

This adds 40% traffic overhead to our CDF approximation

algorithm. As expected, more verification points are needed

to obtain an accurate estimation of Errm. However, the

experiment shows that even this difficult metric can be

roughly estimated using Adam2.

I. Cost Evaluation

An important objective for any monitoring algorithm

is to minimise communication costs. The network traffic

exchanged by a node in Adam2 is proportional to the number

of interpolation points (λ) and the number of gossip rounds.

For λ = 50 the size of a gossip message is approximately

800 bytes. At each round, a node starts exactly one gossip

exchange with a randomly chosen neighbour and is, on

average, contacted by one other node. Each gossip exchange

requires sending and receiving one message, resulting in 2

messages sent and 2 messages received on average every

round. Therefore, for one instance with λ = 50 and 25

rounds, each peer will send, on average, about 40 kB of

data (50 messages), and receive another 40 kB. Since three

aggregation instances are sufficient for MinMax and LCut to

converge, an accurate CDF approximation can be obtained

by sending 120 kB of data (150 messages) per node. This

cost does not depend on the system size.

The time required to generate a CDF estimation depends

on the gossip periodicity. If we consider a reasonable peri-

odicity of 1 second, then an accurate CDF can be obtained

in about 75 seconds (3 instances) using an average upstream

bandwidth of about 1.6 kB/s, and a downstream bandwidth

with a similar value. The CPU, memory, and topology

maintenance costs are negligible.

The costs of EquiDepth are very similar to those of

Adam2, as both systems send the same number of mes-

sages containing similar information. Although EquiDepth

converges faster with the same overhead, our refinement

algorithms quickly achieve lower error rates.

In random sampling, about 1,000 to 10,000 samples must

be obtained by a node in a 100,000-node system in order to

achieve a CDF approximation accuracy comparable to that
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Figure 14. Accuracy estimation error for MinMax.

of MinMax or LCut. Using random walks [4], this requires

generating between 1,000 and 10,000 messages per node –

an order of magnitude more compared to Adam2.

VIII. CONCLUSIONS

This paper introduced Adam2, an algorithm for efficiently

and accurately estimating the statistical distribution of an

attribute belonging to nodes in a large-scale distributed

system. Adam2 has a low cost on the order of 1.6 kB/s

traffic over 75 seconds, and generates approximations within

an average error of 0.05% and a maximum error of 2%.

Further, the algorithm can estimate its own accuracy, and

thanks to its use of gossip techniques, is quite resilient to

churn – obtaining roughly the same average error for very

high churn rates up to 1% per second.

These results follow the trend of using gossip-based

algorithms to efficiently spread information in very large

environments. We are confident that this trend will be pur-

sued with other out-of-the-box algorithms for decentralised

information aggregation. Future large-scale applications will

thus be able to easily implement monitoring and optimi-

sation functions by picking the needed mechanisms from

standard libraries, without the need to reinvent the wheel

each time.
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